A linear complementarity based characterization of the weighted independence number and the independent domination number in graphs

نویسندگان

  • Parthe Pandit
  • Ankur A. Kulkarni
چکیده

The linear complementarity problem is a continuous optimization problem that generalizes convex quadratic programming, Nash equilibria of bimatrix games and several such problems. This paper presents a continuous optimization formulation for the weighted independence number of a graph by characterizing it as the maximum weighted l1 norm over the solution set of a linear complementarity problem (LCP). The minimum l1 norm of solutions of this LCP is a lower bound on the independent domination number of the graph. Unlike the case of the maximum l1 norm, this lower bound is in general weak, but we show it to be tight if the graph is a forest. Using methods from the theory of LCPs, we obtain a few graph theoretic results. In particular, we provide a stronger variant of the Lovász theta of a graph. We then provide sufficient conditions for a graph to be well-covered, i.e., for all maximal independent sets to also be maximum. This condition is also shown to be necessary for well-coveredness if the graph is a forest. Finally, the reduction of the maximum independent set problem to a linear program with (linear) complementarity constraints (LPCC) shows that LPCCs are hard to approximate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coverings, matchings and paired domination in fuzzy graphs using strong arcs

The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...

متن کامل

On independent domination numbers of grid and toroidal grid directed graphs

A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...

متن کامل

Mixed Roman domination and 2-independence in trees

‎‎Let $G=(V‎, ‎E)$ be a simple graph with vertex set $V$ and edge set $E$‎. ‎A {em mixed Roman dominating function} (MRDF) of $G$ is a function $f:Vcup Erightarrow {0,1,2}$ satisfying the condition that every element $xin Vcup E$ for which $f(x)=0$ is adjacent‎‎or incident to at least one element $yin Vcup E$ for which $f(y)=2$‎. ‎The weight of an‎‎MRDF $f$ is $sum _{xin Vcup E} f(x)$‎. ‎The mi...

متن کامل

Independent domination in directed graphs

In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...

متن کامل

INDEPENDENT SETS OF SOME GRAPHS ASSOCIATED TO COMMUTATIVE RINGS

Let $G=(V,E)$ be a simple graph. A set $Ssubseteq V$ isindependent set of $G$,  if no two vertices of $S$ are adjacent.The  independence number $alpha(G)$ is the size of a maximumindependent set in the graph. In this paper we study and characterize the independent sets ofthe zero-divisor graph $Gamma(R)$ and ideal-based zero-divisor graph $Gamma_I(R)$of a commutative ring $R$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1603.05075  شماره 

صفحات  -

تاریخ انتشار 2016